Experimental Section

NMR spectra Melting points are uncorrected. 'H **NMR** and were run with a Varian CFT-80 instrument using tetramethylsilane and dioxane **as** internal standard, respectively. Mass spectra were recorded with a Kratos-25 instrument as well as with a HewlettiPackard **5985** B at **70** eV. IR spectra were recorded with a Hitachi **260-10** instrument. Elemental analyses were carried out at the Instituto de Quimica Bioorgánica del C.S.I.C. (Barcelona).

All commercial α -amino acids and α -hydroxy acids were directly used as received. Fremy's salt was prepared, recrystallized, and stored as reported.⁶

Two buffered solutions²³ were used: sodium carbonate buffer (pH **10)** and phosphate buffer (pH **7.2).** The phosphate buffer was then appropriately adjusted to the pH needed by adding **0.2** M NaOH.

Oxidation of a-Amino and a-Hydroxy Acids. General Procedure. To a stirred solution of **1** mmol of **1** or **2** in **12** mL Stirring was continued for the time shown. The resulting solution, after acidification with **2** N HC1, was added to a solution of **2,4-dinitrophenylhydrazine (1.2** mmol) in **25** mL of **12** N HCl, previously filtered. The **(2,4-dinitrophenyl)hydrazones** obtained were recrystallized from ethanol. Their spectroscopic data (IR, NMR, MS) were identical with those of authentic samples.

Preparation of Triazolines 6 and 7. To a stirred solution of Val **(1** mmol) in **12** mL of sodium carbonate buffer (pH **10)** was added a large excess of Fremy's salt **(3** mmol). After **5** days of stirring, a second batch of Fremy's salt **(3** mmol) was added. Stirring was continued for another **5** days. The resulting solution was then treated with a filtered solution of 2,4-dinitrophenylhydrazine **(2.2** mmol) in **50** mL of **12** N HC1. A precipitate slowly appeared $(24 h)$. Filtration and final recrystallization (twice) from ethanol yielded triazoline **6** in **41%** yield as yellow needles, mp **202-203** "C: IR (KBr) **3275,3100,2980,1690,1610,1590,1500,** 1410,1335,1305,1260,1140,1110,1075,915,860,830,740,710 cm-'; 'H NMR (MezSO-d6, Me,Si) **1.60 (6** H, **s), 8.05 (1** H, d, J ⁼**9.4** Hz), **8.47 (1** H, dd, *J* = **9.4** Hz, *J* = **2.5** Hz), **8.95 (1** H, d, $J = 2.5$ Hz), 15.50 (1 H, s) ppm; ¹³C NMR (Me₂SO-d₆, Me₄Si) **25.55, 82.50, 115.60,122.66, 129.69, 129.96, 138.00, 143.80, 149.50, 158.27** ppm; mass spectrum, m/e (relative intensity) **309** (M+, **60), 294 (loo), 273 (lo), 259 (15), 195 (20), 183 (25).** Anal. Calcd for N, **22.37.** $C_{11}H_{11}N_5O_6$: C, 42.72; H, 3.56; N, 22.65. Found: C, 42.64; H, 3.58;

Identical treatment of Ile **(1** mmol) as above yielded triazoline **7** in **38%** yield, as yellow prisms: mp **194-195.5** "C; IR (KBr) **3275,** 3100,2975,1680,1605,1595,1500,1420,1330,1310,1135,1110, Me4Si) **1.00 (3** H, t, *J* = **7.3** Hz), **1.54 (3** H, **s), 1.90 (2** H, **q,** *J* = **7.3** Hz), **8.05 (1** H, d, *J* = **9.6** Hz), **8.38 (1** H, dd, J ⁼**9.6** Hz, J ⁼**2.4** Hz), **9.08 (1** H, d, *J* = **2.4** H), **14.09 (1** H, **s)** ppm; 13C NMR (MezSO-d6, Me4&) **7.38, 23.72,31.93,85.56, 115.57,122.60,130.02, 130.14, 138.29, 143.82, 149.00, 158.22** ppm; mass spectrum, m/e (relative intensity) **323** (M', **19), 294 (lOO), 273 (24), 183 (21).** Anal. Calcd for C₁₂H₁₃N₅O₆: C, 44.59; H, 4.05; N, 21.66. Found: C, **44.66;** H, **3.86;** N, **21.34.** 1090, 1045, 920, 880, 830, 740, 700 cm⁻¹; ¹H NMR (Me₂SO- d_6 ,

Treatment of commercial (Sigma) a-keto isovaleric acid **(1** mmol) with Fremy's salt **(30** mmol) as indicated for Val yielded triazoline **6** in **58%** yield.

Acknowledgment. We thank the Comisión Asesora of Spain (Proyecto No. **1240/81)** for financial support. We are also grateful to the Universidad Autonoma de Barcelona and the Universidad de Santiago de Compostela for kindly recording our mass spectra.

Registry No. 6, 104197-46-8; 7, 104197-47-9; $H_2NCH_2CO_2H$ **,** 56-40-6; $H_2NCH(CH_3)CO_2H$, 56-41-7; $(CH_3)_2CHCH(NH_2)CO_2H$, 72-18-4; $\text{CH}_3\text{CH}_2\text{CH}(\text{CH}_3)$ CH(NH₂)CO₂H, 73-32-5; **HO**₂CCH₂C- $H_2CH(NH_2)CO_2H$, 56-86-0; $H_2NCH(Ph)CO_2H$, 69-91-0; PhCONHCH2C02H, **495-69-2;** PhCONHCH(CH,)C02H, **2198-** 64-3; CH₃CH(OH)CO₂H, 50-21-5; PhCH(OH)CO₂H, 90-64-2;

OHCCO₂H, 298-12-4; CH₃COCO₂H, 127-17-3; $\text{(CH}_3)_2\text{CHCOCO}_2\text{H}$, 759-05-7; CH₃CH₂CH(CH₃)COCO₂H, 1460-34-0; HO₂CCH₂CH₂-COCOZH, **328-50-7;** PhCOC02H, **611-73-4;** DNP-NHN=CHC-OzH, **3158-42-7;** DNP-NHN=C(CHJCO2H, **790-12-5;** DNP-NH-**1459-83-2; DNP-NH-N=C(CH₂CH₂CO₂H)CO₂H, 1237-47-4;** $N=C(\Pr-i)CO_2H$, **6064-65-9;** $DNP-NH-N=C(Bu\text{-}sec)CO_2H$, DNP-NH-N=C(Ph)C02H, **31334-72-2;** Fremy's salt, **14293-70-0;** oxidase, **9035-73-8; (2,4-dinitrophenyl)hydrazine, 119-26-6.**

An Investigation of the Mode of Formation of the 10-P-5 Protonated Phosphatrane $HP(OCH_2CH_2)_3N^+$

L. E. Carpenter, 11, and J. G. Verkade*

Gilman Hall, Iowa State University, Ames, Iowa 50011

Received June 16, 1986

In 1977 it was reported that the unstable phosphite ester amine 1 reacted with $Me₃O⁺$ and $Ph₃C⁺$ to give the first 10-P-5 cations **2** and **3,** respective1y.l Cation **2 (1-**

hydro-2,8,9-trioxa-l-phospha-5-azatricyclor[3.3.3.0lundecane) was shown to possess a TBP structure by X-ray crystallographic means.2 In contrast to the novel **10-P-5** TBP species such **as 4-10** which have been reported from

our laboratories recently, **2** and **3** feature the relatively nonapicophilic proton and triphenylmethyl group, respectively, in the apical position. It is also curious that the hydridephosphorane cation **2** is the only nonpolyneric product isolated from the reaction of 1 with $Me₃OBF₄$ (Scheme I) rather than the methyl analogue. In contrast, **3** was reported to form in the analogous reaction with Ph_3CBF_4 .¹ Here we show that the unreacted triethanolamine is the source of the protons in the reaction involving Me30BF,. Moreover, we now find that **2** as well as **3** can be formed in the reaction of 1 with Ph_3CBF_4 (Scheme I).

⁽²³⁾ Perrin, D. D.; Dempsey, B. *Buffers for pH and Metal Zon Control,* **Chapman and Hall Laboratory Manual: London, 1974.**

⁽¹⁾ Milbrath, D. S.; Verkade, J. *G.* **J.** *Am. Chem. SOC.* **1977,99,6607 and references therein.**

⁽²⁾ Clardy, J. **C.; Milbrath, D.** S.; **Springer, J. P.; Verkade,** J. **G.** *J. Am. Chem.* **Soc. 1976 98,623.**

⁽³⁾ Carpenter, L. E.; Verkade, J. **G.** *J. Am. Chem. SOC.* **1985,107,7084. (4) Carpenter, L. E.; de Ruiter, B.; van Aken, D.; Buck,** H. **M.; Ver-**

⁽⁵⁾ van Aken, D.; Merkelbach, I. I.; Koster, A. S.; **Buck,** H. **M.** *J.* **kade,** J. **G. J.** *Am. Chem. SOC.,* **in press.** *Chem. SOC., Chem. Commun.* **1980, 1045.**

Results and Discussion

In the synthesis of 2, CHCl₃ is used as a cosolvent to solubilize the $(HOCH₂CH₂)₃N¹$ Using CDCl₃ as a substitute cosolvent we isolate only **2** in the same yield (6%), thus ruling out $CHCl₃$ as the proton source. The other cosolvent, toluene, is another potential proton source, since alkylation of aromatics by carbenium ions involves proton release? However, substitution of heptane for the toluene consolvent gave only **2,** although in somewhat lower yield (4%). Repetitions of the synthesis with $Et_3OBF_4/$ C6H5Me/CHC1,, **MeOS(O),CF,/C6H5Me/CHC1,,** MeOS- $(0)_2CF_3/C_6H_5Me/CDCl_3$, or $MeOS(0)_2CF_3/heptane/$ CHC1, also gave only **2** in comparable yields (ca. 6%). Although these alkylating agents are unlikely sources of protons, $CD_3OS(O)_2CF_3$ was synthesized⁶ and reacted with 1 using C_6H_5Me and $CHCl_3$ as cosolvents. Again, 2 was formed in 6% yield. We believe it unlikely that adventitious water could be present in sufficient quantity to lead to the formation of **2** in 6% yield, especially in view of the rather stringent precautions that were taken to insure anhydrous conditions.^{1,3} Moreover, the yield of 1 is consistently about 6% using $Me₃OBF₄$, $Et₃OBF₄$, MeOS- $(O)_2CF_3$, and $CD_3OS(O)_2CF_3$. It would be fortuitous if the amount of adventitious water were also so constant. Substitution of D_3CCN for MeCN as a solvent for the alkylating agent again gave only **2.**

The yield of **2** is low owing to the rather low yield of 1 (ca. **10%).** Furthermore, intermediate 1 is unstable with respect to polymerization⁷ and must be derivatized in situ.¹ In the course of repeatedly synthesizing 1, we noticed that its yield is maximized at ca. 10% by slowly adding the reactants simultaneously over a 24-h period (even though the evolution of $HMMe₂$ is not complete at this time) and by maintaining a 1:l molar ratio of reactants. The lack of complete $HMMe₂$ evolution indicates that $(HOCH₂C H₂$ ₃N is also not entirely consumed when the alkylating agent is added. We conclude, therefore, that alkylation of the alcohol groups accurs with proton release for the formation of **2** (as well as for the protonation of any unalkylated $HMMe₂$ present in solution).

In a previous publication we reported that **3** is formed when Ph_3CBF_4 is reacted with 1 (Scheme I). We now find that this reaction **is** erratic, giving either **3** or **4** or a mixture of these two products. The competition of OH groups for Ph_3C^+ is expected to be weaker than for Me_3O^+ , thus

accounting for the formation of **3** in the former case. The factors influencing the variable nature of the reaction of 1 with Ph_3C^+ have not been identified.

Experimental Section

Phosphatrane 1 was synthesized by a modification³ of the route given earlier.' To the room-temperature reaction mixture were added the alkylating agents dropwise (in 100 **mL** of MeCN) in 20% molar excess over the (HOCH₂CH₂)₂N used in the preceding reaction. The resulting crude **2** which precipitated was filtered and extracted with 2×25 mL of hot MeCH, and the solvent was removed under vacuum. After washing the residue with 30 mL of Me₂CO, further purification was accomplished as described earlier.'

Acknowledgment. J.G.V. is grateful to the National Science Foundation for a grant in support of this research. We thank Xi Shikang for experimental assistance.

Registry No. 1, 36712-66-0; 2.BF₄, 58418-99-8; (HOCH₂C- $H₂$ ₃N, 102-71-6; P(NMe₂)₃, 1608-26-0.

Proton NMR Studies of Self-Association in the Civet Constituent $(+)$ - (S,S) - $(cis$ - β -Methyltetrahydropyran-2-yl)**acetic acid**

Ehud Keinan,*t Kamal K. Seth, Mahendra Sahai, and Elisha Berman**

Department *of* Organic Chemistry, Weizmann Institute *of* Science, Rehovot 76100, Israel

Received January *24,* 1986

Introduction

Self-association in carboxylic acid solutions has been extensively investigated,' as the nature, energetics, and geometry of the association complex formed is of great interest, particularly in the case of biologically produced carboxylic acids.

Dimerization of simple carboxylic acids in solution have been studied by ¹H NMR spectroscopy, but invariably such investigations were based upon changes in the chemical shifts of the acidic protons alone.2 Chemical **shifts** of these protons, however, are highly dependent on trace impurities, and reproducible results are often difficult to achieve, even following careful purification of both solvent and substrate.

A particularly interesting case of self-association is that of **(+)-(S,S)-(cis-p-methyltetrahydropyran-2-yl)acetic** acid (1) a naturally occurring heterocyclic acid found in trace quantitites in Civet, 3 a perfume material secreted by a scent gland of the civet cat *(Viuerra ciuetta).* We have recently completed its total synthesis⁴ by taking advantage of the enantiomerically pure *(S)-* (+)-5-chloropentan-2-01 which was obtained from enzymatic reduction of the corresponding ketone with *Thermoanaerobium brockii* alcoholdehydrogenase (TBADH)4,5 (Scheme I).

Interestingly, we observed strong concentration and temperature dependencies in the 'H NMR spectrum of both the synthetic material 1 and an authentic sample.⁶ These findings may explain the wide diversity in chemical shifts reported in the literature for synthetic samples of 1 prepared by various authors.⁷ Chemical shift values

⁽⁶⁾ **van** Aken, D.; Castelijns, A. M. C. F.; Verkade, J. G.; Buck, H. M. *Red. Trav. Chim. Pas-Bas* **1979, 98,** 12.

⁽⁷⁾ Booth, B. L.; Hazeldine, R. **N.;** Laali, K. *J. Chem. SOC. Perkin Trans. 1* 1980, 2887.
(8) The polymerization that 1 undergoes may be similar to the ring-

⁽⁸⁾ The polymerization that **1** undergoes may be similar to the ring- opening polymerization observed for a cyclic aminophosphme derivative of a furanoside (Penczek, S.; Baran, J.; Pretula, J.; Tapienis, *G. Proc. IUPACMacronol. Symp. 28th* **1982,203;** *Chen. Abstr.* **1983,98,89802g).**

[†] Incumbent of the Joseph and Madeleine Nash Career Development Chair established by Fondacion Madelon, Zurich, Switzerland. *Incumbent of Charls H. Revson Career Development Chair.